Improving GARCH Volatility Forecasts
نویسندگان
چکیده
Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model generalizes existing regime-switching models that allow for ARCH terms only. The empirical application on U.S. dollar exchange rates shows that our model indeed yields better volatility forecasts than single-regime GARCH and that the allowance for GARCH terms besides ARCH terms can be crucial for the forecast quality.
منابع مشابه
Improving GARCH Volatility Forecasts with Regime-Switching GARCH
Many researchers use GARCH models to generate volatility forecasts. Using data on three major U.S. dollar exchange rates we show that such forecasts are too high in volatile periods. We argue that this is due to the high persistence of shocks in GARCH forecasts. To obtain more flexibility regarding volatility persistence, this paper generalizes the GARCH model by distinguishing two regimes with...
متن کاملVolatility Forecasts in Financial Time Series with HMM-GARCH Models
Nowadays many researchers use GARCH models to generate volatility forecasts. However, it is well known that volatility persistence, as indicated by the sum of the two parameters G1 and A1[1], in GARCH models is usually too high. Since volatility forecasts in GARCH models are based on these two parameters, this may lead to poor volatility forecasts. It has long been argued that this high persist...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملPredictability of Stock Return Volatility from GARCH Models
This paper focuses on the performance of various GARCH models in terms of their ability of delivering volatility forecasts for stock return data. Volatility forecasts obtained from a variety of mean and variance specifications in GARCH models are compared to a proxy of actual volatility calculated using daily data. In-sample tests suggest that a regression of volatility estimates on actual vola...
متن کاملForecasting stock market volatility conditional on macroeconomic conditions
This paper presents a GARCH type volatility model with a time-varying unconditional volatility which is a function of macroeconomic information. It is an extension of the SPLINE GARCH model proposed by Engle and Rangel (2005). The advantage of the model proposed in this paper is that the macroeconomic information available (and/or forecasts) is used in the parameter estimation process. Based on...
متن کامل